Manufacturer | Analog Devices Inc |
Mounting Type | Surface Mount |
Number of I/O | 245 |
Package / Case | 554-FBGA |
Product Status | Active |
Total RAM Bits | 1990656 |
Number of Gates | - |
Voltage - Supply | 1.045V ~ 1.155V |
Number of LABs/CLBs | 11000 |
Operating Temperature | 0°C ~ 85°C (TJ) |
Supplier Device Package | 554-CABGA (23x23) |
Number of Logic Elements/Cells | 44000 |
The ECP5/ECP5-5G family of FPGA devices is optimized to deliver high performance features such as an enhanced DSP architecture, high speed SERDES (Serializer/Deserializer), and high speed source synchronous interfaces, in an economical FPGA fabric. This combination is achieved through advances in device architecture and the use of 40 nm technology making the devices suitable for high-volume, highspeed, and low-cost applications.
The ECP5/ECP5-5G device family covers look-up-table (LUT) capacity to 84K logic elements and supports up to 365 user I/O. The ECP5/ECP5-5G device family also offers up to 156 18 x 18 multipliers and a wide range of parallel I/O standards. The ECP5/ECP5-5G FPGA fabric is optimized high performance with low power and low cost in mind. The ECP5/ ECP5-5G devices utilize reconfigurable SRAM logic technology and provide popular building blocks such as LUT-based logic, distributed and embedded memory, Phase-Locked Loops (PLLs), Delay-Locked Loops (DLLs), pre-engineered source synchronous I/O support, enhanced sysDSP slices and advanced configuration support, including encryption and dual-boot capabilities.
The pre-engineered source synchronous logic implemented in the ECP5/ECP5-5G device family supports a broad range of interface standards including DDR2/3, LPDDR2/3, XGMII, and 7:1 LVDS. The ECP5/ECP5-5G device family also features high speed SERDES with dedicated Physical Coding Sublayer (PCS) functions. High jitter tolerance and low transmit jitter allow the SERDES plus PCS blocks to be configured to support an array of popular data protocols including PCI Express, Ethernet (XAUI, GbE, and SGMII) and CPRI. Transmit De-emphasis with pre- and post-cursors, and Receive Equalization settings make the SERDES suitable for transmission and reception over various forms of media.
The ECP5/ECP5-5G devices also provide flexible, reliable and secure configuration options, such as dual-boot capability, bit-stream encryption, and TransFR field upgrade features. ECP5-5G family devices have made some enhancement in the SERDES compared to ECP5UM devices. These enhancements increase the performance of the SERDES to up to 5 Gb/s data rate.
The ECP5-5G family devices are pin-to-pin compatible with the ECP5UM devices. These allows a migration path for you to port designs from ECP5UM to ECP5-5G devices to get higher performance.
The Lattice Diamond design software allows large complex designs to be efficiently implemented using the ECP5/ECP5-5G FPGA family. Synthesis library support for ECP5/ECP5-5G devices is available for popular logic synthesis tools. The Diamond tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the ECP5/ECP5-5G device. The tools extract the timing from the routing and back-annotate it into the design for timing verification.
Lattice provides many pre-engineered IP (Intellectual Property) modules for the ECP5/ECP5-5G family. By using these configurable soft core IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.
The Lattice Embedded - FPGAs (Field Programmable Gate Array) series LFE5U-45F-7BG554C is FPGA LatticeECP5 Family 44000 Cells 40nm Technology 1.1V 554Pin CABGA, View Substitutes & Alternatives along with datasheets, stock, pricing from Authorized Distributors at bitfoic.com, and you can also search for other FPGAs products.Analog Devices Inc. (ADI) is an American multinational semiconductor company specializing in
the design, manufacture, and marketing of a wide variety of high-performance integrated circuits (ICs) for the processing of analog, mixed-signal, and digital signals (DSP) in virtually all electronic systems. The engineering issue in electronic equipment connected to signal to process has been the main emphasis since we began in 1965. Over 100,000 customers worldwide rely on our signal processing solutions to convert, condition, and process real-world events like temperature, pressure, sonority, illumination, speed, and movement into electric signals for a variety of electronic devices.